p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.29C22, C8⋊C4⋊11C2, (C2×C4).42D4, C4⋊1D4.5C2, C42.C2⋊3C2, D4⋊C4⋊19C2, C4.17(C4○D4), C4⋊C4.20C22, (C2×C8).55C22, C2.21(C8⋊C22), (C2×C4).115C23, (C2×D4).27C22, C22.111(C2×D4), C2.13(C4.4D4), SmallGroup(64,171)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.29C22
G = < a,b,c,d | a4=b4=c2=1, d2=b, ab=ba, cac=a-1, dad-1=ab2, cbc=b-1, bd=db, dcd-1=a2b-1c >
Character table of C42.29C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ15 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ16 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 23 29 16)(2 20 30 13)(3 17 31 10)(4 22 32 15)(5 19 25 12)(6 24 26 9)(7 21 27 14)(8 18 28 11)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(2 32)(3 7)(4 30)(6 28)(8 26)(9 11)(10 21)(12 19)(13 15)(14 17)(16 23)(18 24)(20 22)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,23,29,16)(2,20,30,13)(3,17,31,10)(4,22,32,15)(5,19,25,12)(6,24,26,9)(7,21,27,14)(8,18,28,11), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (2,32)(3,7)(4,30)(6,28)(8,26)(9,11)(10,21)(12,19)(13,15)(14,17)(16,23)(18,24)(20,22)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,23,29,16)(2,20,30,13)(3,17,31,10)(4,22,32,15)(5,19,25,12)(6,24,26,9)(7,21,27,14)(8,18,28,11), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (2,32)(3,7)(4,30)(6,28)(8,26)(9,11)(10,21)(12,19)(13,15)(14,17)(16,23)(18,24)(20,22)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,23,29,16),(2,20,30,13),(3,17,31,10),(4,22,32,15),(5,19,25,12),(6,24,26,9),(7,21,27,14),(8,18,28,11)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(2,32),(3,7),(4,30),(6,28),(8,26),(9,11),(10,21),(12,19),(13,15),(14,17),(16,23),(18,24),(20,22),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
C42.29C22 is a maximal subgroup of
C4.C4≀C2 C8⋊C4⋊5C4
C42.D2p: C42.239D4 C42.240D4 C42.244D4 C42.255D4 C42.257D4 C42.275D4 C42.277D4 C42.286D4 ...
C4⋊C4.D2p: C42.2C23 C42.3C23 C42.4C23 C42.366C23 C42.386C23 C42.388C23 C42.406C23 C42.408C23 ...
C42.29C22 is a maximal quotient of
C42.24Q8 C2.(C8⋊2D4) C4⋊C4⋊7D4 C42⋊8C4⋊C2 (C2×C4).23Q16
C4⋊C4.D2p: C4⋊C4.84D4 C4⋊C4.D6 C42.70D6 C4⋊C4.D10 C42.70D10 C4⋊C4.D14 C42.70D14 ...
C42.D2p: C42.112D4 C42.124D4 C42.19D6 C42.72D6 C42.19D10 C42.72D10 C42.19D14 C42.72D14 ...
Matrix representation of C42.29C22 ►in GL6(𝔽17)
1 | 8 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 5 | 12 |
0 | 0 | 11 | 0 | 5 | 5 |
0 | 0 | 12 | 12 | 0 | 11 |
0 | 0 | 5 | 12 | 6 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
13 | 2 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 11 | 0 |
0 | 0 | 12 | 12 | 0 | 11 |
0 | 0 | 0 | 6 | 5 | 12 |
0 | 0 | 11 | 0 | 5 | 5 |
G:=sub<GL(6,GF(17))| [1,4,0,0,0,0,8,16,0,0,0,0,0,0,0,11,12,5,0,0,6,0,12,12,0,0,5,5,0,6,0,0,12,5,11,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,4,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[13,1,0,0,0,0,2,4,0,0,0,0,0,0,12,12,0,11,0,0,5,12,6,0,0,0,11,0,5,5,0,0,0,11,12,5] >;
C42.29C22 in GAP, Magma, Sage, TeX
C_4^2._{29}C_2^2
% in TeX
G:=Group("C4^2.29C2^2");
// GroupNames label
G:=SmallGroup(64,171);
// by ID
G=gap.SmallGroup(64,171);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,295,362,332,50,963,117,1444,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^2=1,d^2=b,a*b=b*a,c*a*c=a^-1,d*a*d^-1=a*b^2,c*b*c=b^-1,b*d=d*b,d*c*d^-1=a^2*b^-1*c>;
// generators/relations
Export
Subgroup lattice of C42.29C22 in TeX
Character table of C42.29C22 in TeX